
Zuzen, a Cloud-based Framework for Automated
Machinima Generation

Samuel Munilla
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

srmunill@ncsu.edu

R. Michael Young
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

young@csc.ncsu.edu

ABSTRACT
The Zuzen framework is an intelligent tool set for assisting in the
generation of machinima. With Zuzen, users that are novice
cinematographers do not need to use complex movie-making
tools. Rather, they only need to specify a set of high-level
cinematic directives for use in filming a story and Zuzen will
produce a video file that reflects their specifications. This forgoes
the usual learning curve associated with typical machinima or
cinematic content creation tools. This paper describes the Zuzen
framework and details its implementation.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
games

General Terms
Algorithms

Keywords
Artificial Intelligence, Cinematic Camera Control, Machinima,
Service-Oriented Architectures

1.INTRODUCTION
Cinematics created using game engines (known as machinima),
are gaining significant ground as both products for consumption
as entertainment as well as artifacts expressing their makers’
creative designs. Popular web sites (e.g. machinima.com,
gamevee.com) host a wide range of videos created from game
engines as well as tutorials, forums and tool downloads targeted at
machinima creators. While there is a significant interest in
creating machinima, current machinima tools are very labor
intensive and require that a user construct each scene manually.
This is typically done by a group of human players each
controlling one of the cinematic’s virtual characters and at least
one more player controlling a first-person view into the world that
serves as a camera. The camera’s view is recorded to create a
collection of shots which are then edited together by a human
director after recording has ended using an external video editing
program like Movie Maker, iMovie or Final Cut.

A significant challenge for an intelligent camera control system
would be to completely automate this process, taking as input a
specification of a scene’s actions in the form of a script and a list
of camera control directives to be used to film the action, then

producing as output the resulting video. The work we report here
describes initial work on such a system, called Zuzen,
implemented as a cloud-based service that uses the Unreal engine
to create cinematic videos based on client specifications of story
and camera activity.

Zuzen relies on the composition of several existing systems to aid
in the creation of videos. Darshak[4] is used to generate the actual
creation of shots. This system provides a pre-constructed set of
camera directives that can be used inside a 3D environment
containing dynamic objects. Zuzen provides a web interface to
Darshak and adds syntax for more precise timing of camera and
story actions. Additionally, third party tools are used to
automatically render the execution of those actions to video. The
system provides those videos for download to clients via an HTTP
service.

2.RELATED WORK
Machinima, films created using game engines, began on the
Quake II game engine. Today, they created using a variety of
more modern game engines, such as Epic's Unreal engine and
Valve's Source engine. Current tools provided by companies for
creating machinima, such as the Unreal engine's Matinée Editor,
require that the user frame each shot and script each actor's
behavior manually. Generally, this requires navigating a 3D
environment and placing actors and individual cameras.
Additionally, the user must script actor behavior in whatever
language or interface the game engine or tool provides. This
means that in order to create films using a game engine, a user
must first learn how to use the engine's level editing tools. This is
a hurdle for amateur film makers who might have extensive
knowledge about cinematic concepts but may lack experience
with game engine tools. This limitation has led to the creation of
tools aimed at making the creation process more accessible.

Other more specialized tools for Machinima generation exist.
iClone provides tools for creating customized actor models and
manipulating those models on screen in a puppet-like fashion at a
very low level of control (i.e., joint-level movement) during
scenes. While such tools provide a full range of expressivity for
the user, such fine control of actor movement may not be desired
by all users. This method does not lend itself to rapid prototyping
or "what if" pre-visualization sometimes used in film making.
Additionally, like tools built into game engines, these tools also
require that a user learn a specialized, possibly unfamiliar tool set.
Finally, because these tools are installed and run locally on the
users' machine, their effective use requires that users' systems

have the graphics hardware needed to render the polygonal
models used by the tool.

Recently, there has been work in automatic camera control
systems intended to assist users in creating machinima.
Drucker[3] describes automated camera control in a 3D
environment using a task-centric approach. Bares[2] describes a
set of camera directions to use in a 3D environment, "Front",
"Front-Right", "Right", "Back-Right", "Back", "Back-Left",
"Left", and "Front-Left". This eight direction compass rose
approach allows camera shots to be more easily discretized. These
discrete directional shots can more easily be dealt with by other
systems, such as AI planners.

Additionally, Jhala[4] constructed a camera control system,
named Darshak, that automates the control of the camera in the
Unreal Tournament 2004 game engine. This system took in a set
of story actions and and a set of camera directives that describe
constraints on how the story actions were to be filmed. Those
directives were linked to a library of pre-defined camera actions
within the engine that exploit existing cinematic idioms in order
to achieve a more “film-like” experience. Darshak resolved
blocking and location constraints in real time and ran locally on a
machine that needed to have the game engine and the camera
system installed.

The automated control frameworks mentioned above allow a user
to delegate some degree of control of the camera to a computer
system. This is desirable for users who do not wish to specify
exact camera directions.

Cambot[7] is a intelligent system for creating machinima from a
script-like representation. Here, scripts are divided into a number
of scenes, with each scene containing at least one beat.
Additionally, Cambot supports a number of 3D environments or
sets, each annotated with high-level 3D information relevant to
Cambot's control needs. For each scene specified in a script,
Cambot searches for appropriate selection of shot parameters by
iterating through all possible sets of blockings for the given set
that satisfies that scene and chooses the best one using a heuristic
estimate.

In contrast to systems that require each user to provide computing
or data access capabilities sufficient for all their application needs,
service-oriented architectures provide users with access to high
end computation via wed-based interfaces. For example, service
oriented AI architectures have been used to allow planning
frameworks to be used remotely over a web connection. Users can
then construct partial plans locally and send them to a remote
server for completion. This means that a user does not need to run
any planning agents on their local machine and emphasizes a
black box approach. The Zocalo[8] framework is a set of planning
agents that are accessible over a network interface.
Communication with Zocalo is achieved via XML-based plan
files. These files specify a set of actions in a STRIPS-like format
[10], listing preconditions and postconditions for each action. At
the heart of the Zocalo framework is Crossbow, a causal link
planner based on the DPOCL planning algorithm[9]. The system
is able to compute plans based on actions that take place in an
execution environment such as a game engine. Zuzen was
modeled on this paradigm and thus can interface with parts of the
Zocalo framework.

3.SYSTEM DESCRIPTION
Zuzen is a system for generating video files from a script-like plan
file. It operates as a service and can take input from and send
output to a variety of different applications. Communication with
the system is done via HTTP. Zuzen is composed of two different
internal modules that communicate with several third-party
applications. The first of these modules listens for and processes
incoming plan files. Once information about the actions contained
in the plan file is extracted, this information is used to construct a
set of parameterized function calls -- called action classes – that
correspond to the relevant character and camera actions that can
be executed in the game environment. The execution of these
actions is managed by an Execution Manager, written in native
Unreal code. The execution of these actions is recorded using
screen recording software and the resulting video is stored and is
available for the client to download over a web connection. These
components are described in more detail below.

Figure 1: Zuzen Framework

The first component is a C# module that listens for incoming
socket connections and parses incoming plan files and uses this
information to construct concrete Action Classes. The second
component is an UnrealScript module that manages the execution
of actions inside the game engine. The third and final component
is a video capture module consisting of a screen recording
program and a video compression utility. These modules work
together in order to take in a plan file from the user and return a
video file of the execution. This video can then be reviewed by
the user and the action plan tweaked until the desired final
product is produced.

The C# module, called the Recorder, listens for incoming network
connections from clients. Once a connection between Zuzen and a
client is established, Zuzen requests a plan file from the client.
This plan file contains a list of actions that are to be executed for a
set of scenes, as well as information about the timing between the
actions in the scenes. This file is then parsed to extract this
information about the actions.

In order for the actions to be executed within the game
environment, they must be converted into native Unreal code.
These pieces of code are called Action Classes. Each Action Class
contains the code that will cause the action to occur within the
game environment. These constructed action classes are then
passed to the Execution Manager for further processing. A list of
these actions is provided in Section 3.2.

The Execution Manager controls the execution of actions within
the game environment. The Execution Manager is written in
native Unreal code. This allows for the precise timing of actions
that would not be achieved if execution timing was managed
externally. Zuzen's Execution Manager can control the timing and
execution of two types of actions, Story Actions and Camera
Actions. At an abstract level, there is no difference in how these
actions are specified. However, they control different things in the
3D environment and are therefore subject to different restrictions.
Story actions control actions such as the movement and speech of
characters and other events that occur in the environment. Any
number of story actions can occur simultaneously in the world.
Camera actions control the movement and direction of the camera.
Zuzen can only record one perspective in the environment at a
given moment, therefore, only one camera action can execute at a
time.

Three queues are used to keep track of actions: the Pending
Action Queue, which contains all of the actions that are waiting to

execute; the Executing Actions Queue, which contains all of the
actions which have started executing but have not yet finished;
and the Executed Action Queue, which contains all of the actions
that have finished executing. Initially, all actions are in the
Pending Actions Queue. Each game “tick” the Execution Manager
iterates through all of the actions in the Pending Action Queue
and checks if they are ready to start executing. If they are, the
Execution Manager starts the action and moves it to the Executing
Actions Queue. Actions in the Executing Actions Queue remain
there until they have finished executing, at which point they are
moved to the Executed Actions Queue.

In order to render the execution of actions to video, third-party
applications are used. The execution of actions is recorded to
video using the FRAPS application. This application records the
computer's video buffer to a file on a frame by frame basis.
Because this data is not compressed, the resulting video file is
very large and cannot be easily viewed with common video
players. Because of this, the file is encoded to a more common
format using VirtualDub. This allows the final video file to be
transferred over a network connection more quickly. Multiple
scenes sent by the client are concatenated using AviSynth.
Alternately, Flash previews of individual scenes can be generated
using FFmpeg. This allows a user to fine tune a scene iteratively.
Because the Recorder module captures video directly from a
single machine's video output, only one Recorder at a time can be
executing on a given machine. However, Zuzen is capable of
managing multiple rendering servers running the Recorder
application. To provide this functionality, a separate server
process running a Scheduler program is used. All incoming
cinematic plans are initially sent to this schedule server. This
Scheduler maintains a list of render servers that are currently idle.
Whenever a plan is received, the Scheduler forwards it to one of
the available render servers and marks that server as busy. Once
rendering is complete, it returns the video file to the appropriate
client and remarks the relevant Renderer as idle.

3.1 Temporal Language
Allen[1] describes thirteen types of relationships between two
temporal intervals. These are: "before", "after", "during",
"contains", "overlaps", "overlapped by", "meets", "met by",
"starts", "started by", "finishes", and "finished by". A
representation of these temporal relationships are shown in Figure
2. Being that these represent all of the possible temporal
relationships between two intervals, any relation model between
actions should attempt to be able to express all or as many of the
thirteen relationships as possible.

In order to describe the temporal relationships between actions, a
formal language is used. Relational operators in this language map
to Allen's temporal relations. Actions within this language are
described by their type and by any additional parameters that that
action may require. Taken together, the set of actions and relations
described by this language form a specification on a directed
acyclic graph. As will be discussed, Zuzen currently implements
only a subset of Allen's relationships.

Each action in the framework has a set of preconditions, a set of
constraints, and a set of post conditions, thereby following a
STRIPS-like approach. In the Zuzen framework, preconditions

Figure 2: Temporal Intervals

primarily concern timing; whether or not the actions predecessors
have begun executing and whether sufficient time has passed
between the actions. Constraints are used to ensure that actions
are not used with inappropriate objects. For example, the Speak
action can only be used with objects that are capable of speech.
Postconditions are things that occur in the game environment in
the course of an action executing. In order for an action to be
considered successfully executed, all of its post conditions must
be true. For example, for a MoveTo action to be considered
successfully executed, the specified actor must have arrived at his
or her destination.

In order to control the timing of actions in the game world, a
relational model between actions must be specified. Specifically,
it is necessary to specify in what order actions should be executed,
as well as how actions overlap.

Additionally, because the actions used by the Zuzen are described
in terms similar to those used in traditional planning frameworks,
it would be useful if a similar relational model was chosen as this
would allow planning systems to fill in gaps in incomplete plans
or to suggest alternate plans.

Because of these considerations, the following model was used to
describe the relationship between actions. Any individual action
can have any number of predecessor actions and any number of
successor actions. Predecessors of an action are actions that must
start before that action while successors of an action are actions
that must start after that action. This relationship between actions
forms a Directed Acyclic Graph (DAG), a structure that is
common in planning engines. Additionally, an action may be
offset from one of its predecessor by a number of seconds. This
offset may either be from the start of a predecessor of from the
end of a predecessor. This restriction is necessary because actions
occur in real time in the game environment.

While it is possible to know when an action starts (when it is
moved to the Executing Actions Queue) and when an action is
complete (when all of its postconditions are true), it is not
possible for Zuzen code to know the exact time when an action's
code ends its execution. This is because a) the underlying game
engine does not provide system-level calls that can track
thread/process-level events like function completion and b) no
API is provided to estimate run-time of a specific function call.
The execution times of story actions are of variable length within
the game world. For example, the time needed for a MoveTo
action will vary depending on the distance between the action's

start and destination and the speed of the actor performing the
action.

This limited knowledge about the execution state of an action
means that we can specify start point to start point and end point
to start point relationships between actions, but not end point to
end point or start point to end point relationships between
actions. In other words, we cannot specify that one action end at
the same time another action ends.

Because each action has a duration and can be offset from other
actions and each cinematic plan represents a total ordering of
actions, the Relational Graph of camera actions and story actions
may also be thought of as two parallel time lines. One time line
mapping to story actions and the other mapping to camera
actions.

3.2 Action Library

A pre-made library of character and camera actions is used to
assist in the rendering of the scenes. The following actions are
currently provided:

MoveTo Actor Destination
This action is used to have the specified actor walk to
the specified location. Destination must be a named
pathnode.

Speak Actor Hearer Text
This action causes the specified Actor to face the
Hearer and the string Text to appear on the screen as a
subtitle.

Jump Actor Direction
Causes the specified actor to jump in the specified
direction.

Crouch Actor
Causes the specified actor to crouch. The actor will
continue to crouch until an Uncrouch action is specified
for that actor.

PerformEmote Actor Emote
The specified actor will perform a preprogrammed
animation (e.g., waving hands, pointing hands, wiping
sweat from the character's brow). Animations come
from a library built into each character model.

LookAt ObjectOfAttention Direction Distance [Duration]
Causes the camera to look at the specified object from
the given Direction, from the specified Distance.
Optionally, a duration may be passed to the action.

Track ObjectOfAttention Direction Distance [Duration]
Causes the camera to look at the specified object from
the given Direction, from the specified Distance. If the
ObjectOfAttention moves, the camera will follow
along. Optionally, a duration may be passed to the
action.

Figure 3: Zuzen DAG Structure

Pan ObjectOfAttention1, ObjectOfAttention2, Distance
Causes the camera to pan from the first object to the
second object from the specified distance.

Dolly ObjectOfAttention, Distance [Duration]
Causes the camera to dolly along with the
ObjectOfAttention, following it if it moves. Optionally,
a duration for the may be specified.

EstablishingShot Shot
Invokes one of the pre-defined establishing shots built
into the level.

OverTheShoulderShot Shoulder Target Distance Direction
Cause the camera to position over the shoulder of one
actor looking at the specified target in the specified
direction and at the specified distance from the source
actor's shoulder.

CameraEffect Effect
Causes one of a number of camera overlays to appear on
screen. Possible effects are: Splatter, Fade In, Fade Out,
Cut to Black.

AddProp Prop Location
Adds an inanimate object to the environment at the
specified location.

TimeDilation Scale
Alters the passage of time in the environment by the
given scale.

3.3 Setup Information

In order to render a given script, client systems must provide
Zuzen a small amount of additional information beyond the set of
actions to be executed. First, the level to be used for the filming of
action must be specified, along with the location within the level
where each scene will take place. These levels and settings are
selected from a library of levels created for the specific game
engine being used.

Additionally the name, model, and location for each actor in the
scene must be specified. Actor models also come from a library of
character models provided by the engine. Locations in the
environment are named pathnodes that are placed in each level by
hand by Zuzen designers.

3.4 Environments
A library of settings is used to aid in the construction of films.
These settings provide a set of stock actors and a 3D environment
for the actors to interact in. For each setting, a list of actor meshes
and a set of top down maps showing the location of the named
path nodes is provided. These maps are stored on the server as
images and available over a HTTP connection. Additionally, a set
of premade establishing shots exist within each level. Any setting
in the system distinguishes location by using the naming
conventions described below.

New levels may be added to this library using Unreal's built in
level editor. These levels are created as normal and annotated
pathnodes and establishing shots are added to the 3D
environment. Hungarian notation is used to name these
pathnodes: they are labeled with a “loc_” prefix and a short
description of where it is located in the environment. For
example, a pathnode near a desk in a library might be labeled
“loc_LibraryDesk”. Similarly, establishing shots are prefixed with
“es_” and a short description of what they display: a shot of the
front of a restaurant might be labeled “es_RestaurantFront”.

Currently a setting based on American Western films is provided,
known as WestWorld. This setting provides two separate
stereotypical Western towns, one modeled on a Mexican villa and
one modeled on a frontier town, and eight stock characters,
including both male and female characters, to choose from. Each
of these provided towns have a variety of visually different
buildings.

3.5 Action Classes

Below are two examples of the UnrealScript code necessary to
cause actions in the game world. A common method is used to
parse incoming information from a plan file. This can be seen
belows in the bindings.getConstant(...) method.
The first action presented is a MoveTo. This action causes an
actor to move from its current location to a specified location. In
this case, the game engine provides some assistance with this. The
variable 'MoveTarget' is built into the engine and a unique
instance of it is kept for each actor. Setting it causes the actor to
move toward that location automatically.

TargetParam = bindings.getConstant("target");

newMoveTarget = FindWorldObject(TargetParam);

if (newMoveTarget == none) {
 return false;
}

MoveTarget = newMoveTarget;

return true;

Next we will examine a camera action. This is a simple LookAt
action which will cause the camera to change it's focus to a
designated target. Additional parameters allow the user to set view
distance and view angle. First, we will examine the code to set the
view target. Here the named object is found in the game world
and set as the 'ObjectOfAttention' for the in game camera.

TargetParam = bindings.getConstant("target");

TargetObject = FindWorldObject(TargetParam);

if (TargetObject == none) {
 return false;
}

if(TargetObject.IsA('Controller')){
 TargetObject = Controller(TargetObject).Pawn;
}

ObjectOfAttention = TargetObject;

Next, we parse the shot distance from the list of parameters. Shot
distance can only be set in discrete intervals. These intervals are
mapped to an enum stored elsewhere in the class.

ShotTypeParam =
 bindings.getConstant("shotType");

switch(shotTypeParam) {
 case "SHOT_VERY_CLOSE":
 shotType = SHOT_VERY_CLOSE;
 break;
 case "SHOT_CLOSE":
 shotType = SHOT_CLOSE;
 break;
 case "SHOT_MEDIUM":
 shotType = SHOT_MEDIUM;
 break;
 case "SHOT_LONG":
 shotType = SHOT_LONG;
 break;
 case "SHOT_VERY_LONG":
 shotType = SHOT_VERY_LONG;
 break;
 default:
 shotType = SHOT_MEDIUM;
 break;
}

Finally, we parse the view angle, again this values is limited to a
discrete set of choices. Here the choices correspond to the one of
eight cardinal directions, relative to the facing of the actor being
observed.

DirectionParam =
 bindings.getConstant("direction");

ViewAngle = rot(0,0,0);

switch (DirectionParam) {

 case "Front":
 break;
 case "FrontRight":
 ViewAngle.Yaw = 8192;
 break;
 case "Right":
 ViewAngle.Yaw = 16384;
 break;
 case "BackRight":
 ViewAngle.Yaw = 24576;
 break;
 case "Back":
 ViewAngle.Yaw = 32768;
 break;
 case "BackLeft":
 ViewAngle.Yaw = 40960;
 break;
 case "Left":
 ViewAngle.Yaw = 49152;
 break;
 case "FrontLeft":
 ViewAngle.Yaw = 57344;
 break;
 default:
 break;
}

4.CURRENT APPLICATIONS
Zuzen is designed as a cloud-based service. As such, it does not
have an interface other than manually writing the required plan
files. However, other applications can interact with it in a
meaningful way. Two sample applications are described below.
The first, Darshak is a planning framework designed to work with
cinematic plans, like those used by Zuzen. The second,
Longboard, is a tablet-based graphical front end that can interface
to Zuzen in order to render its videos.

4.1 Darshak

Darshak is an intelligent camera planning system. A plan
containing a sequence of story actions is be passed to the planning
agent. Using this information, Darshak will create a plan
containing a sequence of camera actions displaying the given
events using knowledge about cinematic idioms. This completed
discourse can then be processed by the Zuzen framework in order
to generate a completed video. Darshak seeks to satisfy three main
requirements in order to generate a coherent cinematic discourse.
First, the director seeks to extract the “salient elements” from the
given discourse. Second, these elements are organized into a
rhetorical structure that will allow for a coherent telling of a story
containing the events. Third, camera shots are chosen to depict the

events is the story such that a set of cinematic constraints are
satisfied.

Darshak uses a variation of the DPOCL planning algorithm called
DPOCL-T, adding temporal constraints to the planning domain.
Temporal constraints are used by Darshak to maintain explicit
timing relationships between temporal variables describing the
start and end times of actions. Only two types of temporal
constraints are used by Darshak: before and equals. As a result,
actions are represented by arranging them along a directed graph
with directionality representing the passage of time.

Darshak also includes a module for executing the plans it
produced inside a 3D virtual environment. This allowed a user to
produce and tune plans on a single workstation. Partial plans may
also be sent to and from Darshak over a TCP connection. This
means that Zuzen and Darshak may either be run of the same
server or on different servers.

4.2 Longboard
Longboard[7] is a sketch-based storyboarding tool that serves as a
front end for Zuzen. In Longboard, individual storyboard frames
are created by sketching them out on a TabletPC. These sketches
are supplemented by annotations for each frame which give
additional cinematic directions, such as actor destinations, actor
dialog and camera timing. The information provided by the user
in the TabletPC client application is converted to XML plan files
representing story and camera actions in Zuzen's required format.
Because actions must occur between storyboard frames in order to
form a coherent time line, these plan files are incomplete and are
missing pieces of information that are necessary to render the
scene. This missing information can include additional camera
shots or actor movement.

To flesh out the needed action details, these incomplete files are
sent to an external planner, Darshak. Darshak fills in any
information that is missing from the plan file by adding additional
actions. The newly completed plan file contains all of the
information necessary to render the scene. This file is sent back to
the TabletPC. The file is then sent from the tablet client to Zuzen
and rendered to video using the methods described above. The
rendered video is then sent back to the the TabletPC for review.

Longboard emphasizes an iterative approach to building a a video
file. If a user is unsatisfied with the resulting video, he or she can
replace existing storyboard frames with new ones or add
additional frames until the resulting cinematic is acceptable.

5.DISCUSSION
One way we evaluate Zuzen is to characterize the system's ability
to model the temporal relationships between story and camera
actions described by Allen and mentioned above. Using the
system of predecessors and offsets, a subset of Allen's temporal
relationships can be easily defined. Below, the definable
relationships are shown and we describe how they are represented
using the relational model described above.

X Before Y: X successor of Y;
 Y offset from X by i
X After Y: Y successor of X;
 X offset from Y by i
X Meets Y: X successor of Y;
 Y offset from X by 0
X Met by Y: Y successor of X;
 X offset from Y by 0

X Equal Y:
 X and Y equal length;
 X successor of Y;
 Y offset from start of X by 0
X Overlaps Y:
 X successor of Y;
 Y offset from start of X by i
X Overlapped by Y:
 Y successor of X;
 X offset from start of Y by i
X During Y:
 X shorter than Y;
 Y successor of X;
 X offset from start of Y by i

Figure 4: Longboard Workflow

X Contains Y:
 Y shorter than X;
 X successor of Y;
 Y offset from start of X by i

X Starts Y:
 Y longer than X;
 X successor of Y;
 Y offset from start of X by 0
X Started by Y:
 X longer than Y;
 Y successor of X;
 X offset from start of Y by 0

X Finishes Y:
 Y longer than X;
 X successor of Y;
 Y offset from start of X by i
X Finished by Y:
 X longer than Y;
 Y successor of X;
 X offset from start of Y by i

While the definition of these four relationships is straightforward,
definitions for the other nine temporal relationships are not so
easily provided. This limitation arises from the inability of the
system to specify the duration or end time point of executing
actions. The remaining relationships require knowledge about
both the start and end points of each action. Nevertheless, we
have found in practice that the four relationships modeled within
Zuzen are sufficient to represent a wide class of cinematics. Our
future work will either extend the underlying scripting
environment for Zuzen to provide duration information about
executing actions or will or port Zuzen to work with a game
engine that provides this functionality natively.

A second limitation with Zuzen's implementation is the
requirement that spatial details (e.g., the placement of pathnodes,
the creation of images that show the pathnodes within a given
level's sets) must be created manually by Zuzen developers.
Currently, each pathnode in an environment must be placed and
named manually inside the Unreal level editor, UnrealEd. This is
a very time consuming process requiring the developer to navigate
around the 3D environment. Once the process is complete, a top
down map of some kind must be created and annotated so that
knowledge of the spacial relationships between nodes in the level

can be maintained. This knowledge is necessary to ensure that
actors move where they are supposed to. In order to get top-down
maps of the interior or buildings, it is often necessary to remove
pieces of the level geometry, either the roof of a building or, in
some cases, the entire upper floor. Automating some or all of this
process will significantly reduce the amount of work required to
prepare a new setting.

6.ACKNOWLEDGMENTS
This research was funded in part by the National Science
Foundation (awards #0450102 and #0915598). The authors wish
to thank the Lawdogs Unreal development team for use of their
character models in Darshak and in Zuzen.

7.REFERENCES

[1] Allen, J. F., Maintaining knowledge about temporal intervals
in Communications of the ACM 26:832-843, 1973.

[2] Bares, W and Lester, J., Cinematographic User Models for
Automated Realtime Camera Control in Dynamic 3D
Environments in the Proceedings of the Sixth International
Conference on User Modeling,. 1997

[3] Drucker S. and Zelter D., Intelligent Camera Control in a
Virtual Environment in the Proceedings of Graphics
Interface, 1994.

[4] Jhala, A. and Young, R. M., Representational Requirements
for a Plan Based Approach to Automated Camera Control in
the Second Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2006.

[5] Young, R. M., Story and discourse: A bipartite model of
narrative generation in virtual worlds in Interaction Studies
8:177-208, 2006.

[6] Elson D. K. and Riedl, M. O., A Lightweight Intelligent
Virtual Cinematography System for Machinima Generation
in the Proceedings of the 3rd Annual Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 2007.

[7] Jhala, A., Rawls, C. and Young, R. M., Longboard: A Sketch
Based Intelligent Storyboarding Tool for Creating
Machinima in the Proceedings of the Florida Artificial
Intelligence Research Society Conference (FLAIRS), 2008.

[8] Young, R. M., An Overview of the Mimesis Architecture:
Integrating Intelligent Narrative Control into an Existing
Gaming Environment in The Working Notes of the AAAI
Spring Symposium on Artificial Intelligence and Interactive
Entertainment, 2001.

[9] Young, R. M. and D. Moore, J. D. DPOCL: A Principled
Approach to Discourse Planning, in the Proceedings of the
Seventh International Workshop on Text Generation, 1994.

[10] Fikes, R. and Nilsson, N., STRIPS: a new approach to the
application of theorem proving to problem solving in
Artificial Intelligence 2:189-208, 1971.

